Fatty acids regulate endothelial lipase and inflammatory markers in macrophages and in mouse aorta: a role for PPARγ.
نویسندگان
چکیده
OBJECTIVE Macrophage endothelial lipase (EL) is associated with increased atherosclerosis and inflammation. Because of their anti-inflammatory properties we hypothesized that n-3 fatty acids, in contrast to saturated fatty acids, would lower macrophages and arterial EL and inflammatory markers. METHODS AND RESULTS Murine J774 and peritoneal macrophages were incubated with eicosapentaenoic acid or palmitic acid in the presence or absence of lipopolysaccaride (LPS). LPS increased EL mRNA and protein. Palmitic acid alone or with LPS dose-dependently increased EL mRNA and protein. In contrast, eicosapentaenoic acid dose-dependently abrogated effects of LPS or palmitic acid on increasing EL expression. EL expression closely linked to peroxisome proliferator activated receptor (PPAR)γ expression. Eicosapentaenoic acid blocked rosiglitazone (a PPARγ agonist)-mediated EL activation and GW9662 (a PPARγ antagonist)-blocked palmitic acid-mediated EL stimulation. Eicosapentaenoic acid alone or with LPS blunted LPS-mediated stimulation of macrophage proinflammatory interleukin-6, interleukin-12p40, and toll-like receptor-4 mRNA and increased anti-inflammatory interleukin-10 and mannose receptor mRNA. In vivo studies in low density lipoprotein receptor knockout mice showed that high saturated fat rich diets, but not n-3 diets, increased arterial EL, PPARγ, and proinflammatory cytokine mRNA. CONCLUSIONS n-3 fatty acids, in contrast to saturated fatty acids, decrease EL in parallel with modulating pro- and anti-inflammatory markers, and these effects on EL link to PPARγ.
منابع مشابه
The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation
Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...
متن کاملLocalization of Epidermal-Type Fatty Acid Binding Protein (E-FABP) in Degeneration and Regeneration of Sciatic Nerve after Crush Injury in Mouse
Purpose:The regeneration of axon and myelin sheet after crush injury of peripheral nerves involves interaction of several types of cells, including Schwann cells, monocyte, macrophage and fibroblast. Among them, haematogenous macrophages invading into the peripheral nervous systein play a major role in myelin uptake during Wallerian degeneration. Materials and Methods: In this study 35 C57/BL6 ...
متن کاملPPARγ in the endothelium regulates metabolic responses to high-fat diet in mice
Although endothelial dysfunction, defined as abnormal vasoreactivity, is a common early finding in individuals with type 2 diabetes, the endothelium has not been known to regulate metabolism. As PPARγ, a transcriptional regulator of energy balance, is expressed in endothelial cells, we set out to investigate the role of endothelial cell PPARγ in metabolism using mice that lack PPARγ in the endo...
متن کاملChanges in Serum Levels of FABP4 and HsCRP after Administration of Omega-3 Fatty Acids Separately or + Vitamin E in Patients with Coronary Artery Disease
Background and purpose: Inflammatory markers of A-FABP and HsCRP play an important role in progression of cardiovascular disease. Anti-inflammatory and anti-platelet aggregation effects of omega-3 fatty acids are known. The aim of this study was to investigate the effects of omega-3 and omega-3+ vitamin E supplements on serum levels of these inflammatory markers. Materials and methods: This d...
متن کاملIncremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR-/- mice.
OBJECTIVE Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2012